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Abstract—The CISRU project has focused on the development
of a software suite for planetary (and terrestrial) robotics, fully
abstracted from the robotic platform and enabling interaction
between rovers and astronauts in complex tasks and non-
structured scenarios. To achieve this, a high level of autonomy is
required, powered by AI and multi-agent autonomous planning
systems inherited from ERGO/ADE [1] and the PERASPERA
program. This communication presents the system developed in
CISRU, focusing on the modules of AI-based perception and the
interaction between astronauts and robots.

Index Terms—space robotics, AI, HRI, ISRU

I. INTRODUCTION

Space exploration, particularly the long-term habitation of
planetary surfaces, requires significant technological advances,
with a strong focus on collaboration between robots and astro-
nauts where the modularity and autonomy of space robots will
stand out, allowing them to perform different tasks [2], [3].
Efficient utilisation of space resources during the establishment
of extraterrestrial settlements is also of paramount importance.

In the AI-enabled robotics SW suite for autonomous Col-
laborative ISRU (CISRU) project [4], we have developed a
comprehensive software suite that facilitates our understand-
ing, navigation, and interaction with the environment and its
agents, including robots and astronauts. The CISRU suite
comprises five main modules, each designed to fulfil specific
objectives.

The first module centres on multi-agent autonomy compo-
nents and enables seamless communication among different
agents and mission control. The second module is dedicated
to perception and incorporates AI algorithms to enhance envi-
ronmental awareness. This encompasses environment segmen-
tation, object and agent pose estimation, obstacle detection, as
well as damage and emergency situation identification.

The third module provides essential components for safe
navigation, encompassing obstacle avoidance, social naviga-
tion with astronauts, and collaboration among diverse robots.
The fourth module focuses on manipulation functions, which
play a crucial role in In-Situ Resource Utilisation (ISRU)
scenarios. CISRU integrates multi-tool manipulation functions,
a novel tool-changer design, and a variety of objects, empow-
ering agents to autonomously undertake a wide range of tasks.
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The fifth module oversees the cooperative behaviour of all
modules, integrating astronaut command and Mixed Reality
interfaces. It also includes map fusion of different agents,
task supervision, as well as emergency and error control. To
validate the suite’s performance, an astronaut-rover interaction
dataset within a dedicated planetary environment have been
generated. Additionally, extensive testing has been conducted
in the GMV SPoT analog environment and various simulators.

The test results exemplify the advantages of the E4 level of
autonomy (following the levels defined by ECSS standards),
enabling a high level of abstraction and showcasing the
capabilities of AI in space systems. This level of autonomy, in
conjunction with collaboration between astronauts and robots,
is pivotal for the successful construction of structures and the
accomplishment of mission-specific tasks. This paper presents
the development of the CISRU suite, the preparation of field
tests, and the analysis of results, highlighting the potential
of this AI-powered comprehensive suite and emphasising the
significance of high autonomy and collaboration in paving the
way for future planetary exploration missions.

II. CISRU STRUCTURE

In this section, we describe the overall architecture of the
developed software suite. The suite, as mentioned above, is
divided into 5 different modules, that are designed to work
simultaneously and to exchange different data to obtain a
successful result. The perception components are described
in Section III given the importance of such development.

The different interfaces of the modules were developed
accordingly, and, in some cases, they make use of previous
technologies such as ROS2 interface messages or ERGO
Agent messages. The system is structured in such a way
that the control centre is able to communicate with all the
robot Agents and then each Agent is able to convert the
high level commands into the different subsystem medium
level commands like moving to a specific position as part of
locomotion subsystem. Meanwhile both robots can make use
of the Perception and Navigation components.

A. Multi-agent component

Based on the ERGO architecture, for the communication
with the different subsystem reactors, the agent controller uses
a specific interface based on goals and observations. In a multi-
agent system, two or more agents interact with each other
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to accomplish more complex tasks. Using a specific reactor,
the MAS (Multi-Agent Synchronisation) reactor, the different
agent instances can send and receive goals and observations
from the other agents. The agents can work in different auton-
omy levels. This autonomy levels follow the ECSS standard
and determine what telecommands are processed and the level
of autonomous decision taking enabled. The autonomy level
acquired for CISRU is E4 autonomy level. Only E4 goals
are accepted in this level. E4 goals are high level goals that
the system decomposes, plans and schedules using on-board
autonomy and decision-making capabilities (typically with a
planner on-board). If the execution deviates from the expected,
the system can adapt the plan accordingly. This Multi-Agent
is also in charge of the activities synchronisation between
the different vehicles or agents, specifically for this project
two rovers and one astronaut. This component is required for
improving the collaboration between the different agents and
being able to adapt the plan depending on the status of the
different agents.

B. Guidance, navigation and control components

The Guidance, navigation and control (GNC) of the rovers
is necessary in order to be able to move the vehicles au-
tonomously. The navigation component is based on Visual
SLAM (Simultaneous Localisation and Mapping) using in-
formation from the stereo camera, inertial sensor and wheel
odometry. The input from the stereo camera is processed by
a perception component, as detailed in the perception section,
to obtain a filtered point cloud and used as SLAM input to
improve the performance of the algorithm.

Fig. 1. Fast Marching Square algorithm

The guidance and control is based on ROS2 packages like
NAV2 which is a software library to obtain a trajectory plan
and control robotic vehicles [5]. For the path planning, a NAV2
plugin had been developed based on Fast Marching Square
algorithm [6] and integrated with the control.

C. Manipulation components

The manipulation components are required to obtain sam-
ples simulating a exploration mission where the rovers should
map a new zone and take samples from the interesting re-
gions. Also the manipulator should be useful for astronaut
collaboration. Due to these requirements, the main rover has
a ROBOTIS Manipulator-H robotic arm with a specific tool-
changer on the end-effector to perform the different tasks.

The control of the robotic arm is based on MoveIt2 from
PickNik which is a ROS2 package prepared to do path plan-
ning and control different robotic arms. The first component
of the manipulation is able to communicate with MoveIt2 to
command different positions to the robotic arm. The second
component is the tool-changer which is in charge of all
the procedure to assembling and disassembling the different
tools by communicating with the other components and the
management of the tool status. The last component is the
sample collection, which is also capable to communicate with
the other components to assembly a shovel tool, collect a
sample and storage it.

D. Cooperative behaviour components

As the name of CISRU project indicates, one of the main
objectives to improve the robotics and astronaut collaboration,
so the cooperative behaviour components are the ones neces-
sary for this objective.

The robot collaboration requires to share information and
knowing the position of the other vehicles. For this reason, the
environment detection is also able to detect the rovers which
improves the collaboration by avoiding possible path collision
between both vehicles. The second component, to improve
this collaboration is the mapping fusion which is necessary to
know the position of the both robots based on same map.

Fig. 2. Map fusion

In the design of the Human-Robot Interaction (HRI) com-
ponent, a shared agency between astronauts and robots has
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been employed as the ontological foundation. This allows for
commanding both the astronaut and the different rovers, while
they share the same information and are capable of supervising
each other.

To enable this, the astronaut is equipped with technical
devices that facilitate communication through various methods
with the mission control centre and the different Robotics
Working Agents (RWAs). In this case, a device based on
Microsoft Hololens 2 has been developed, which allows the
astronaut to visualise real-time information and send com-
mands to and receive commands from the RWAs and the
mission control centre. Additionally, a console integrated into
the forearm of the spacesuit serves as a monitor, facilitating the
necessary levels of communication, primarily through manual
interaction with the screen.

The mixed reality (MR) device enables the astronaut to
visualise and interpret information, as well as issue commands
using gaze and voice - although gestures can also be utilised.
This capability is particularly valuable during extravehicular
activities (EVAs), as it allows the astronaut to manage tasks
without having to release the tools or equipment they are using
at that moment.

In this system, as previously mentioned, the rovers are capa-
ble of monitoring the astronaut and detecting any emergencies,
such as if the astronaut falls, deviates from the expected
location, or loses communication. This represents a significant
improvement in risk management for each mission.

III. PERCEPTION COMPONENT

The perception component in CISRU was one of the most
important developments. These components oversee the vision
and perception of the robots. They include Human-Machine
interaction detection, equipment anomaly detection, and Hu-
man emergency situations, as well as semantic segmentation
for the correct identification of obstacles for navigation.

These functions were implemented as Neural Networks.
All models but semantic segmentation one, are low resource
consumption and run in a MyriadX VPU, a computing unit
that is being tested in space environments as a possibility to
process AI models in extreme conditions [7]. The semantic
segmentation model, given that it is bigger and more exhaus-
tive, is prepared to run on a GPU or FPGA (Zynq UltraScale+
MPSoC is the current chosen hardware, which is also being
tested for spatial environments [8]).

The particular architecture used is for all models but seman-
tic segmentation is Mobilenet-SSD [9], but trained for different
targets. This architecture is dedicated to image detection, and
it uses Single Shot Detection as one of the key features for
its fast and precise output [10]. It was selected because of the
input data received (a continuous video) that permitted us to
have a precise result that could be corrected over time thanks
to the fast predictions of the model.

On the following subsections, we explain each of the
functionalities and how the inside mechanism works, consid-
ering the input image and the output detections. All output
detections of all models are then integrated and used in

ROS2 components, which were described briefly in the CISRU
structure section.

A. Astronaut interaction detection and emergency situations

These two functionalities were seamlessly integrated into
a unified system by training a single MobileNet-SSD model
instance and incorporating a tracking algorithm atop the output
layer. This innovative approach enabled instance identification
across successive images, proving to be an efficient solution
for the CISRU scenario.

The tracking algorithm itself, based on the Kalman filter,
played a pivotal role in maintaining lightweight computing
demands [11]. Although it may not offer the highest level of
accuracy, it successfully tracked objects detected in the image
stream. While there was a possibility of reassigning an instance
if a very similar object of the same class appeared in the
image, this scenario was unlikely given the sparse presence of
astronauts and robots in the environment. Additionally, given
the hardware constraints of the mission, this tracking system
proved to be highly effective, allowing for the simultaneous
tracking of up to 60 objects.

The model’s training process leveraged a dataset containing
detection labels for astronauts, rovers, rocks, and solar panels.
The input to the system comprised two images: one for
depth (derived from merging stereo images) and one for
RGB information. The RGB image was processed by the
network, generating a vector of bounding boxes representing
the instances found in each image.

To associate spatial coordinates with these regions of in-
terest (ROI), a spatial location calculator was employed. It
utilised depth information from the input depth map to cal-
culate the average depth values within the ROIs and removed
those falling out of the specified range. These bounding boxes,
along with their associated depth information, were then fed
into the tracking algorithm, which determined the identity of
each object. If an object had not been previously identified,
the algorithm incremented its ID, ensuring consistent tracking
across subsequent detections.

Building on these fundamental calculations, a higher-level
function specialised in recognising instances of astronauts
within predefined interactive distances from rovers or solar
panels, identifying it as Human-Machine interaction. Addition-
ally, the system was designed to detect emergencies, such as
astronauts being in close proximity to dangerous objects like
rocks. The definitions of dangerous labels were configurable,
and this configuration layer did not interfere with the lower-
level software, showcasing the system’s modular design.

Emergencies were also detected in the event of an astronaut
falling. This anomaly was identified by analysing the tracked
instance’s pose and position, with sudden changes in bounding
box disposition serving as a key indicator [12]. Different
values for the gravitational constant were taken into account
to accommodate variations in the extraterrestrial environment.

In response to these emergency situations, the system
promptly notified the multi-agent system, ensuring that ap-
propriate measures were taken to safeguard the mission’s
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Fig. 3. Human interaction detected between astronaut and a solar panel at
HI-SEAS

Fig. 4. Human interaction detected between astronaut and a solar panel at
ESTEC

success and the well-being of astronauts and robots alike.
This sophisticated integration of object detection, tracking, and
emergency response mechanisms showcased the robustness
and adaptability of the CISRU scenario’s monitoring and
interaction system.

B. Equipment anomaly detection

This functionality serves a highly specialised purpose,
specifically tailored for the CISRU scenario where the focus
is on analysing solar panels distributed within a test field. In
such extraterrestrial environments, solar panels play a pivotal
role as a primary source of energy alongside nuclear power
sources. The key challenges for solar panels in these spatial
settings primarily revolve around two main issues: the risk of
cracking due to impacts, which can be mitigated by the use of
protective glasses, and the concern of overheating [13], [14].
These concerns formed the basis for labelling the dataset of
solar panels.

The dataset was meticulously curated for image detection,
employing data augmentation techniques on various mock-
ups of solar panels under diverse illumination conditions
and incorporating different patches of cracks and burnouts to
ensure a comprehensive representation of real-world scenarios.

To facilitate the analysis, a MobileNet-SSD architecture was
selected as the model of choice. This model had been trained
using a dataset specifically focused on identifying cracks on
solar panels. Whenever a rover was directed to autonomously
inspect a rack of solar panels, the model was deployed on the
MyriadX VPU. The command to the rover included crucial
parameters, notably the number of solar panels comprising a
rack. Each individual solar panel was uniquely identified using
April tags.

The rover’s inspection process entailed a systematic exam-
ination of the rack. For every April tag detected, the model
would evaluate whether it could view the entire solar panel.
If it could, and the panel was intact, it would be recorded as
’good.’ In contrast, if the model couldn’t observe the entire
panel, it was marked as ’spotted.’ Additionally, if any part of
the panel that was visible was found to be cracked, it would
be promptly categorised as ’cracked.’

Fig. 5. Semantic segmentation module

This methodology exhibited a high level of accuracy, which
proved essential given the challenging terrain through which
the rover navigated. The uneven terrain often caused the cam-
era to be off-centre, making the distinctions between ’good,’
’spotted,’ and ’cracked’ panels, as well as the transitions
between these states, invaluable in ensuring the efficiency and
reliability of the inspection process.

The training of this model followed a straightforward ap-
proach, as it was essentially an adaptation of the previous
model, albeit without the additional layers. This simplicity
in model development and the rigor in dataset preparation
contributed to the success of the solar panel inspection system
within the CISRU scenario.

C. Semantic segmentation

The functionality of semantic segmentation represents a
critical component of the system, integral to the mapping
and navigation module. Its significance arises from the unique
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challenges posed by the choice of navigation sensor: a Stereo-
RGB camera. Unlike LIDAR and similar systems, stereo
cameras are known for their limitations in generating accurate
depth maps [15], adding complexity due to the absence of a
precise ground truth in the context of uneven terrains found on
celestial bodies like Mars, the Moon, or the environments used
for testing. These terrains, when mapped using a stereo cam-
era, often produce noisy point clouds or depth maps, rendering
them unsuitable for safe navigation by robotic autonomous
systems.

To address this issue, a semantic segmentation model was
introduced to interpret the images and determine which vol-
umes, as detected in the depth image, pose actual navigation
hazards. Semantic segmentation, unlike other neural network
approaches such as object detection, involves recreating and
reinterpreting the entire input image to assign each pixel a
label corresponding to the object it belongs to. However, this
computational process is resource-intensive, demanding more
powerful hardware. Consequently, the system transitioned to
more robust options, specifically the Zynq UltraScale+ MPSoC
and Jetson Orin AGX, both of which were tested to benchmark
the model’s performance in real-time navigation scenarios.

The dataset preparation for this functionality is an exten-
sive and meticulous process, as elaborated in the AI dataset
acquisition section. Once the dataset was ready, numerous
models were evaluated to ensure compatibility with the chosen
hardware and to meet the stringent performance requirements.
Mistaking a rock as non-dangerous could have catastrophic
consequences for the robotic platform, underscoring the need
for precision in model selection.

The final model chosen was DeepLabV3+ [16], a well-
established model previously tested in rover navigation set-
tings[17]. DeepLabV3+ offers a simple yet effective decoder
module that refines segmentation results, particularly along
object boundaries, enhancing obstacle definition for navigation
purposes. The model takes an RGB image from the rover’s
front camera as input and generates an image of the same
resolution, with a palette comprising five possible classes: not
labelled, soil, close-rock, far-rock, and little-rock. This output
is not only valuable for analysis from a human perspective, as
it can be visualised in colours, but also for navigation purposes.

The palletised output is overlaid onto the depth image,
where pixels corresponding to soil or little-rock are set to
infinity, indicating the absence of obstacles in those directions.
This effectively clears the map, enabling safer navigation.
Unlabeled pixels also play a crucial role; when the rover
encounters an unknown object (e.g., a person, not labelled
in this dataset), the depth map is preserved in that volume,
treating it as an obstacle for navigation.

One notable achievement of the semantic segmentation
system was its ability to deliver results at a high frame rate,
which was crucial for real-time navigation. This ensured that
the rover could process and react to the environment swiftly,
further contributing to the success of the mission.

In this context, it’s important to acknowledge that despite
these significant achievements, one of the most formidable

challenges encountered during the CISRU scenario was re-
lated to communication. Operating in remote, extraterrestrial
environments posed considerable difficulties in maintaining a
robust and continuous data link with the rover. In this context,
the palletised outputs generated by the semantic segmentation
system played a critical role. Their efficiency and compact
representation facilitated the transmission of crucial navigation
data even under challenging communication conditions. These
palletised outputs helped mitigate the impact of communica-
tion constraints, allowing the rover to continue its mission with
a higher degree of autonomy and safety.

In essence, semantic segmentation, implemented through
DeepLabV3+ in this scenario, serves as a cornerstone for
enabling accurate and safe navigation in challenging extrater-
restrial environments, where traditional depth sensors are not
yet available for autonomous robotic systems.

Fig. 6. Semantic segmentation module

IV. AI DATASET ACQUISITION

The use of artificial intelligence will fuel up complex robot-
robot and astronaut-robot interactions in space during the next
decades [1].

One of the most critical parts of developing artificial intel-
ligence algorithms is training. Training the AI with a quality
real-image datasets rather than exclusively using synthetic
images greatly increases the accuracy of the AI.

The creation of a real-image dataset is a resource heavy
process, especially in regards to the man hours required to
label the images. Creating a system that would allow for self-
labelling of the thousands of images constituting a dataset
would save on both the time and overall monetary cost of
a project.

To carry out the developments of the second module,
focusing on perception through AI, a good dataset of real or
analogue data is needed to train the various models developed.
With labels such as astronaut, rover and rock, not usually
found in commercial or benchmark datasets.

To achieve this, three datasets of analogue data taken at
the Automation and Robotics Planetary Laboratory of ESTEC
have been merged using a novel self-labelling system. Addi-
tionally, data from the GMV Mars Yard SPoT and the analogue
habitat in Hawaii, HI-SEAS (The Hawai’i space exploration
analog and simulation), located on the slopes of Mauna Loa,
have also been included.

These datasets were labelled with bounding boxes for de-
tection models of any kind. The labels were also exported
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Fig. 7. Rock dataset captured at the Automation and Robotics Planetary
Laboratory of ESTEC

in YOLO and PASCAL voc formats, to allow a wider range
of models to test with during the project. The process of
labelling was pseudo-automated: given that no previous dataset
targeted this labels, a few images were hand labelled and
then a Mobilenet-SSD was trained with these to label others.
Then another adversarial network was added, to determine
if the image was properly labelled. Additionally, at random
the images were supervised to ensure the good quality of the
dataset created.

This format (identification on image) of the labels proved
very helpful for Human-Environment interaction detection and
emergency situations, but proved to be not enough for the
navigation model, in which the detection of a rock without
establishing the boundaries of it didn’t fix the noisy map. Due
to this problem, a rock segmentation dataset from [18] have
been used to pre-train the semantic segmentation module.

V. TESTING

During the summer of 2023, the final tests of the project
were conducted, with a focus on verifying the different ca-
pabilities of each module. To accomplish this, two distinct
scenarios were prepared: one involving multi-robot planetary
exploration focused on mapping and searching for materials
for ISRU and the other centred around astronaut-robot col-
laboration focused on settlement maintenance like solar panel
repair.

In the first scenario, a leading robot called the Lunar
and Martian Autonomous Reconnaissance Rover (LAMARR)
explores the surface, analysing the local geology in search
of points of interest. Once such points are discovered, the
second rover, our Mini-Autonomous Explorer (MAE), which
is also mapping the terrain, approaches the first robot to
provide it with the necessary tools for analysing the area. Thus,
LAMARR, equipped with a robotic arm and an integrated tool-
changing system, can retrieve the tools carried by MAE and
also deposit regolith samples in it, allowing MAE to transport
them back to the base.

The Multi-Agent was able to change the exploration plan
when LAMARR was detecting a interesting zone. In this
case, the plan was modified in order to obtain a sample with

the cooperation of both vehicles and after finishing it, both
vehicles receive the command to continue with the original
exploration plan.

Fig. 8. Lunar and Martian Autonomous Recognisance Rover (LAMARR)
and Mini Autonomous Explorer (MAE) during the tests at GMV SPoT

The second scenario is based on activities necessary for a
lunar settlement maintenance reducing the EVA and reducing
the human risk. In this context, LAMARR assesses the con-
dition of the base’s solar panels and identifies any damages.
If any issues are detected, the multi-agent sends collaboration
requests to the astronaut, indicating which panel is damaged
and describing the type of damage which is AI output. This
initiates a sequence of repair tasks for the astronaut, with
LAMARR providing assistance and supervision. In case of
an emergency, LAMARR sends messages to the mission
control centre, like if the human machine interaction detection
components detects a astronaut felt as shows Fig. 9.

The semantic segmentation and astronaut interaction and
emergencies detection are required for the astronaut and rover
collaboration. The semantic segmentation was used not only to
feed the GNC in order to avoid the noisy mapping generated
by pure stereo navigation, but also to generate a safe zone
around the astronaut workspace, to increase security in the
mission. On the other hand, the rover was able to supervise
the astronaut tasks by the human-environment detection and it
was able to send notifications to the human-machine interface
in case the detection of the interaction was wrong. Also, in
case of astronaut drop detection, the rover was able to send an
alert to the astronaut to confirm an accident. In case no answer
is registered or the astronaut replies with the command HELP,
the rover is able to contact the control centre to supervise the
astronaut health by another person.
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Fig. 9. Astronaut drop detection

VI. CONCLUSIONS

CISRU paves the way for future space exploration, where
humans and robots must collaborate to survive and create
new infrastructure. Moreover, CISRU also serves as a transfer
system between space technology and terrestrial applications,
with potential use cases in the nuclear sector, refineries,
mining, and more.

The development of analog datasets is a key driver in
the utilisation of AI in space, as well as its integration into
space-graded systems and compliance with space software
requirements. One of the major challenges with these datasets
is labeling, which we have addressed by creating a new
method that combines different data sources and enables
automated labeling. This significantly reduces costs in terms
of manpower.

It is worth noting that an interdisciplinary approach is
essential for these developments, enabling us to understand the
diverse mission needs and create an abstract and user-friendly
suite.
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